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A procedure is proposed to construct highly accurate variational wave functions with
large and very large numbers of basis functions. The procedure has a number of advantages in actual
computations on parallel computer clusters. In particular, by using this procedure we have determined
very accurate numerical values of the ground-state energies in the positronium ion
Ps− �or e−e+e−� �E=−0.262 005 070 232 980 107 770 375 a.u.� and hydrogen ion �H−

�E=−0.527 751 016 544 377 196 589 759 a.u.� The variational energies of the negative hydrogenlike ions �or
H−-like ions� with the finite nuclear masses �T−, D−, 1H−, and Mu−� are also presented. These energies are the
best variational ground-state energies ever obtained for these ions.
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In our work �1�, we proposed a very effective strategy for
constructing highly accurate, variational wave functions.
Later, the procedure from �1� was applied to dozens of Cou-
lomb and non-Coulomb three-body systems. Based on the
procedure in �1�, we have achieved significant progress in
highly accurate computations of various few-body and three-
body systems. In this study, we improve the optimization
strategy proposed in �1� by adding one additional and very
important step that allows us to increase �drastically� the
overall quality of the method. In particular, this step is
needed to construct the optimal wave functions with large
and extremely large numbers of basis functions.

The improved strategy works for an arbitrary three-body
system. However, bearing in mind the importance of the hy-
drogenlike negatively charged ions for numerous applica-
tions �see, e.g., �2��, below we want to apply the newly de-
veloped strategy to construct highly accurate wave functions
for the �H− ion and for a few other similar systems. Also in
this study we consider the ground 1 1S �L=0� states in the
similar two-electron positronium ion Ps− �or e−e+e−� and
muonic ion Mu− �or e−�+e−�. For hydrogenlike ions with
finite nuclear masses, e.g., for 1H−, D−, and T− ions, we take
into account the recent nuclear masses recommended by
NIST �3�. Note that the bound states in these ions cannot be
considered with the use of the Hartree-Fock method because
it does not produce any bound states in these ions.

Our main computational goal below is to solve the corre-
sponding Schrödinger equation H�=E�, where H is the
Hamiltonian, E�0 is the bound-state energy, and � is the
corresponding three-body wave function. As is well known
�see, e.g., �4�� for the bound-state spectra, this problem is
equivalent to the optimization or minimization of the energy
functional, i.e.,

H� = E� Û E = min�

���H���
�����

. �1�

In actual applications, the unknown wave function � is rep-
resented by the linear combinations of some basis functions
�i, i.e., �=�i=1

N Ci�i, where the coefficients Ci are the linear
�or variational� parameters of the method. In such cases, the

problem, Eq. �1�, is reduced to a solution of the following
eigenvalue problem:

�Ĥ − E · Ŝ�C = 0 Þ �D̂−1/2ÛĤÛ−1D̂−1/2 − E�C = 0, �2�

where Û is the unitary matrix that reduces the overlap matrix

�Ŝ� to the diagonal form D̂, i.e., Ŝ= Û−1D̂Û. In many appli-

cations, the Hamiltonian matrix Ĥ and the overlap matrix Ŝ
are two dense matrices of large �N�2500� and very large
�N�4000� dimensions. An accurate solution �and even a
partial solution� of Eq. �2� is a very complicated problem.
The main problem is related to the fact that the Hamiltonian

matrix Ĥ and overlap Ŝ matrix in Eq. �2� are extremely ill-
conditioned, i.e., almost degenerated. In particular, the con-
dition number K �5� for a typical overlap matrix in our
present computations was K=log10���max�S�� / ��min�S���
	75–110, where �max�S� and �min�S� are the maximal and

minimal eigenvalues of the overlap matrix Ŝ �in fact, all ei-
genvalues of any overlap matrix are always positive�. In ad-
dition to very large condition numbers, in actual cases each
matrix element of these matrices depends on some nonlinear
parameters that must be optimized to determine the lowest
possible energy E.

In actual computations, all of these trouble spots can be
avoided with the use of extended arithmetic accuracy. The
most effective FORTRAN-based packages with arbitrary arith-
metic precision have been written and extensively tested by
Bailey �6,7�. This extended precision software works very
effectively in applications to various few-body systems. Note
that in our present computations we operated with computer
words that contain from 80 up to 116 decimal digits.

In fact, in this study we restrict ourselves to the consider-
ation of the ground 1 1S �L=0� states in the symmetric Cou-
lomb three-body systems only. Below, we determine the en-
ergies and other bound-state properties of the ground 1 1S
�L=0� states in the Ps− �or e−e+e−� and �H− ions by using our
optimization strategy for the nonlinear parameters in the trial
wave functions. The Hamiltonian H for each of these Cou-
lomb three-body systems takes the following form �in atomic
units 	=1, me=1, e=1�:
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2 −
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r32
−

1

r31
+

1

r21
, �3�

where M is the mass of the positive particle in the ions
considered, i.e., M =1 for the Ps− ion and M =� for the �H−

ion. The operator �i= �� /�xi ,� /�yi ,� /�zi� is the three gradi-
ent operators �i=1,2 ,3�, while rij = �ri−r j�=rji are the three
relative coordinates �here and below �ij�= �21� , �31� , �32��.
Also, in this equation and everywhere else herein, the sub-
scripts 1 and 2 stand for the electrons e−, while the subscript
3 means the positively charged particle, i.e., positron e+ in
the Ps− ion and infinitely heavy nucleus in the �H− ion. As
mentioned above, our present goal is to determine the highly
accurate solutions of the corresponding Schrödinger equation
H�=E�, where E�0.

The exact wave functions of the Ps− and H− ions are ap-
proximated with the use of exponential variational expansion
in relative or perimetric coordinates r32, r31, r21 and u1, u2,
u3, respectively. For the ground 1 1S states in the Ps− and H−

ions, this expansion takes the form �1�

� =
1

2
�1 + P̂21��

i=1

N

C̃i exp�− 
̃ir32 − �̃ir31 − �̃ir21�

=
1

2
�1 + P̂21��

i=1

N

Ci exp�− 
iu1 − �iu2 − �iu3� . �4�

Here Ci are linear �or variational� parameters and 
i�
̃i�,
�i��̃i�, and �i��̃i� are nonlinear parameters. The operator P̂21

is the permutation of the two identical �1 and 2� particles
�electrons� in the Ps− and H− ions. The perimetric coordi-
nates u1 ,u2 ,u3, in Eq. �4� are simply related to the three
relative coordinates r32,r31,r21: rij =ui+uj and vice versa ui

= 1
2 �rki+rij −rkj�, where i� j= �1,2 ,3� and rij =rji. Therefore,

for the nonlinear parameters 
i, �i, and �i in Eq. �4� one

finds �i= 
̃i+ �̃i, �i= 
̃i+ �̃i, and 
i= �̃i+ �̃i. Since the peri-
metric coordinates u1 ,u2 ,u3 are truly independent and al-
ways positive, all nonlinear parameters 
i, �i, and �i�i
=1, . . . ,N� in Eq. �4� are also positive. This fact significantly
simplifies their optimization. In contrast with this some of

the nonlinear parameters, 
̃i, �̃i, �̃i �i=1, . . . ,N� can be nega-
tive and, therefore, their optimization is not an easy task.

The optimization strategy used in this study is essentially
based on the procedure developed in our earlier work �1�.
That procedure �1� allows one to construct extremely accu-
rate wave functions of very high quality for an arbitrary
three-body system. In general, the procedure �1� includes the
following two steps. For many systems, the first step is the
construction of the short-term cluster functions with N
	400–600 basis functions �1�. All nonlinear parameters
�	1200–1800 parameters� in such wave functions are care-
fully optimized. Recently, such “well optimized” short-term
wave functions have been constructed for all important
three-body systems.

At the second step, our goal is to construct the many-term
part of the trial wave function, which usually includes 1000–
2500 basis functions �long-term tail of the wave function�.
The number of nonlinear parameters in such cases is too

large ��5000� to be optimized carefully. Therefore, some
different strategies must be applied in those cases when N
�1000. In fact, the nonlinear parameters in the wave func-
tions are chosen quasirandomly from 3, 4,¼, 10 different
parallelotopes or boxes �1�. The sizes and relative positions
of these boxes are the real nonlinear parameters of the
method �1�. In the case of the three-box version, one finds 28
actual nonlinear parameters �1�. All of these 28 parameters
can be optimized quite accurately, if the total number of
basis functions N2500. Then the total number of the basis
function is increased to larger values, e.g., N=3500 and/or
N=4200. The nonlinear parameters are not changed during
this last step of the procedure.

Recently, however, it was found in computations that the
optimal values of nonlinear parameters determined, e.g., for
N=2500, are not even close to the optimal values of these
parameters obtained for N�3500, i.e., the overall quality of
the wave function with N�3500 terms is certainly not very
good. But how can we improve the overall accuracy of the
wave function in those cases when N�3500? It is clear that
the reoptimization of all 28 nonlinear parameters for N
	3500 cannot be used, in principle, since such a process
takes a very long time. The only working strategy at such
dimensions is to reduce the total number of actual nonlinear
parameters. The further study of this problem shows that not
all 28 nonlinear parameters are equally important in compu-
tations with large N. In general, among 28 nonlinear param-
eters one always finds the three following groups of param-
eters: �i� a group of rapidly changing parameters �the
optimization of each of these parameters produces a signifi-
cant decrease in the total energy�, �ii� slowly changing pa-
rameters �relatively small changes in the total energy�, and
�iii� unimportant parameters �their optimization provides just
very small changes in the total energy or no changes at all�.
As follows from the results of numerous computations at
large dimensions, approximately 1/3 of all nonlinear param-
eters at large dimensions are rapid �or fast� parameters, while
	1/3 of them are slow varying parameters and the remain-
ing 1/3 of these parameters are nonimportant parameters.
From computations of various systems with N=3500–4200
basis functions, we have observed the following combina-
tions: 10-10-8, 11-9-8, 9-10-9, etc. Here we assume that the
total number of nonlinear parameters equals 28, and the no-
tation a−b−c means the combination of a fast, b slow, and c
unimportant nonlinear parameters.

It is clear that the direct selection of fast parameters at
very large dimensions is also a very complicated and costly
problem. However, in most cases the nonlinear parameters,
which were found to be fast in computations with N=2500
basis functions, are also fast parameters in computations with
N=3500 basis functions. In general, only a very few nonlin-
ear parameters may change their type when N increases from
2500 to 3500 and higher values. A typical situation is, e.g.,
when one fast parameter for N=2500 becomes a slow param-
eter for N=3500 and/or one slow parameter changes to an
unimportant parameter, etc. However, a substantial part of
the nonlinear parameters do not change their type when N
increases from 2500 to 3500–4000 basis functions. This fact
follows from the results of numerous computations with
large and very large numbers of basis functions. Finally, the
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fast nonlinear parameters �selected at smaller dimensions�
are approximately optimized at large and very large dimen-
sions. By using a few parallel computer clusters, one can
optimize some or all fast parameters at one step. This proce-
dure allows one to obtain the variational energies and other
bound state properties, which are significantly more accurate
than analogous energies or properties known from “regular”
calculations based on our earlier strategy �1�. The results
from Table I show that even approximate optimization of the
fast nonlinear parameters at large or maximal dimensions
produces better �=lower� variational energies than careful
and accurate optimization of all such parameters at smaller
dimensions.

To illustrate the abilities of this method in actual compu-
tations in this study, we determine the ground-state energies
of the Ps− and �H− ions. The variational energies of these
ions determined with the exponential variational wave func-
tions, Eq. �4�, are presented in Table I. Note that these ener-
gies are significantly more accurate than the energies ob-
tained for these systems in all earlier works, including a few
of ours. Table I also contains the variational results obtained
for these two-electron ions in earlier works �8–10�. More
references for these ions prior to 2002 can be found, e.g., in
�9�. Table II contains the variational energies of the different
H−-like ions with the finite nuclear masses. In fact, the T−,
D−, 1H−, and Mu− �=�+e−e−� ions are presented in this Table.
In our present calculations, we have used the following par-
ticle masses: mt=5496.921 58me, md=3670.482 965 2me,
mp=1836.152 672 61me, and m�=206.768 284me �3�. These
masses are currently recommended by NIST �3� and they are

slightly different from the values that we have used in our
earlier computations of these ions �except for the value of the
tritium mass�. The determined ground-state energies indicate
clearly that the optimization strategy developed in this study
has a great potential for highly accurate computations of the
bound-state spectra in various three-body systems.

In conclusion, we want to note that the highly accurate
energies determined for all three-body ions considered in this
study are of some interest in a number of applications. How-
ever, in many cases some bound-state properties of these
ions are of much greater interest. In this work, these proper-
ties have also been determined to a very good accuracy, but
many of them are in very good agreement with the values
obtained in our earlier work �10�. Therefore, it is not neces-
sary to present all of them here. Let us report only our best
expectation values for the electron-positron, electron-
electron, and triple-� functions in the Ps− ion: ��+−�
=2.073 319 800 518 3�10−2, ��−−�=1.709 967 563 596
�10−4, and ��+−−�=3.588 915 8�10−5 �all values are in
atomic units�. The first and last of these expectation values
determine different annihilation rates of the positron ��2�,
�3�, �4� , . . . and �1�, respectively� in the Ps− ion. In particu-
lar, by using our ��+−� and ��+−−� expectation values and
formulas from �10�, one finds �2�	2.080 485 305 25
�109 s−1, �3�	5.636 415 155 0�106 s−1, and �1�

	3.824 91�10−2 s−1. The agreement with the �1� value ob-
tained in �10� can be considered to be very good �this expec-
tation value contains the triple-� function ��+−−�, which is
not easy to evaluate due to its very slow convergence rate�.

TABLE I. The total energies �E� in atomic units �me=1, h=1, e=1� for the ground states of the Ps− and
H− ions. N designates the number of basis functions used.

N E�Ps−� N E��H−�

3000 −0.26200 50702 32980 10777 0054 2800 −0.52775 10165 44377 19658 8192

3300 −0.26200 50702 32980 10777 0204 3000 −0.52775 10165 44377 19658 8632

3500 −0.26200 50702 32980 10777 0262 3300 −0.52775 10165 44377 19658 9134

3700 −0.26200 50702 32980 10777 0293 3500 −0.52775 10165 44377 19658 9410

3800 −0.26200 50702 32980 10777 0301 3700 −0.52775 10165 44377 19658 9586

3800a −0.26200 50702 32980 10777 0375 3700a −0.52775 10165 44377 19658 9759

Eb �6� −0.26200 50702 32980 10776 886 Eb −0.52775 10165 44377 19658 67

Eb �5� −0.26200 50702 32980 10769 6 Eb −0.52775 10165 44377 19650 3

Eb �4� −0.26200 50702 3294 Eb

aAdditional optimization of the fast nonlinear parameters at this dimension has been used.
bThe best variational energies �in a.u.� know for these ions from earlier calculations.

TABLE II. The total energies �E� in atomic units for the ground 1 1S �L=0� states of some H−-like ions.
N designates the number of basis functions used.

Ion N E Ion N E

T− 2800 −0.52764 90482 02999 95037 3116 1H− 2800 −0.52744 58811 09463 97978 5780

T− 3700 −0.52764 90482 02999 95037 5038 1H− 3700 −0.52744 58811 09463 97978 7790

D− 2800 −0.52759 83246 84448 42166 8461 Mu− 2800 −0.52505 48065 28795 36587 1114

D− 3700 −0.52759 83246 84448 42167 0480 Mu− 3700 −0.52505 48065 28795 36587 2993
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Note also that the expression for the two-photon annihilation
rate �2�, used in �10�, also includes the lowest-order radia-
tive correction to the two-photon annihilation rate �11�. The
sum of the �2� and �3� annihilation rate is called the total
annihilation rate �	2.086 121 720 4�109 s−1. The known
experimental value of the total annihilation rate � for the Ps−

ion is 2.09�9��109 s−1 �12�. The detailed study of positron
annihilation in the Ps− ion will be considered elsewhere.

Thus, the newly developed optimization strategy for the
wave functions with the large and very large numbers of
nonlinear parameters allows one to produce extremely accu-

rate �or essentially exact� variational wave functions for an
arbitrary three-body systems. Currently, the overall accuracy
of our three-body wave functions is far beyond the analogous
numerical accuracy that can be provided by any alternative
three-body method. These wave functions can now be used
to determine �to very high accuracy� the expectation values
of all regular and most singular properties in arbitrary three-
body systems. In particular, the newly constructed wave
functions can be applied to obtain the lowest-order relativis-
tic and QED corrections in the Ps−, Mu−, 1H−, D−, T−, and
�H− ions and other two-electron ions and atoms.
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